

Using Classes
String Class

AP Computer Science A – Java

Lecture Contents

● Declaring a String

● String Class Methods

– length()

– charAt(int index) ← not part of the AP Subset!

– indexOf(String s)

– substring(int start)

– substring(int start, int end)

– equals(String s)

– compareTo(String s)

These methods
were covered in
part 1

String Class – Calling Methods

● Common String class methods:

int length()
int indexOf(String str)
String substring(int start)
String substring(int start, int end)
boolean equals(String other)
int compareTo(String other)

String toUpperCase()
String toLowerCase()
char charAt(int index)
boolean equalsIgnoreCase(String other)

String Class – substring()

● Since we don’t cover char in the AP Subset…

● The substring method returns a String within the range given by a:
– Start index (then end is set to the end of the string)

– A start and an end index (it includes the start, excludes the end character)

H e o o r d !Wl l l

<String>.substring(int start)

<String>.substring(int start, int end)

String Class – Calling Methods

● Common String methods:

int length()
int indexOf(String str)
String substring(int start)
String substring(int start, int end)
boolean equals(String other)
int compareTo(String other)

String toUpperCase()
String toLowerCase()
char charAt(int index)
boolean equalsIgnoreCase(String other)

Declaring a String

● We’ve been declaring strings using:

String s = "Hello World!";

Declaring a String

● These are (almost) equivalent ways to declare and initialize a string:

String s = "Hello World!";

String s;
s = "Hello World!";

Declaring a String

● These are (almost) equivalent ways to declare and initialize a string:

String s = "Hello World!";

String s;
s = "Hello World!";

String s = new String("Hello World!");

String s;
s = new String("Hello World!");

● The latter two are the “normal” way to declare and initialize objects.
– The first ways are “sort cut” ways just for the String class objects.

Storage of Strings and the equals Method

● A String is an object in Java.

● Objects in Java are stored by reference
– This means the object data is stored in one place, and the variable

contains a number that represents the location of the object.
– The following is the code to declare and initialize a string,

as well as a diagrammatic representation of the String object.

H
s

e o o r d !Wl l l

String s = "Hello World!";

Storage of Strings and the equals Method

● A String is an object in Java.

● Objects in Java are stored by reference
● The Java compiler will optimize storage if the program uses the

same string in different locations:

String s1 = "Hello World!";
String s2 = "Hello World!";

H

s1

e o o r d !Wl l ls2

There is only one
copy of the string
“Hello World!”
stored in memory.

Storage of Strings and the equals Method

● Since both S1 and S2 refer to the same location...

String s1 = "Hello World!";
String s2 = "Hello World!";
System.out.println(s1 == s2);

H

s1

e o o r d !Wl l ls2

Storage of Strings and the equals Method

● Since both S1 and S2 refer to the same location...

String s1 = "Hello World!";
String s2 = "Hello World!";
System.out.println(s1 == s2);

H

s1

e o o r d !Wl l ls2

true

Storage of Strings and the equals Method

● When we use the new keyword to initialize a string, the compiler
will not do the same optimization.

String s1 = "Hello World!";
String s3 = new String ("Hello World!");
System.out.println(s1 == s3);

false

H
s3

e o o r d !Wl l l

H
s1

e o o r d !Wl l l There are two copies
of the string
“Hello World!”
stored in memory.

Storage of Strings and the equals Method

● If you wish to compare the value of the data stored in two different
objects, use the equals method.

– For String objects, equals compares character-by-character to decide
if two strings are the same.

String s1 = "Hello World!";
String s3 = new String ("Hello World!");
System.out.println(s1 == s3);
System.out.println(s1.equals(s3));

false
trueH

s3
e o o r d !Wl l l

H
s1

e o o r d !Wl l l

● Recall using the Math class methods…

● How does the usage of these String class methods differ?

Storage of Strings and the equals Method

int x = Math.sqrt(5);
int y = Math.abs(x);

String s = "Hello World!";
int x = s.length();
int y = s.indexOf("l");

H
s

e o o r d !Wl l l

● Recall using the Math class methods…

● How does the usage of these String class methods differ?

– String methods operate on a String object, above this is object “s”.

– We don’t have a Math object, only a Math class.

Storage of Strings and the equals Method

int x = Math.sqrt(5);
int y = Math.abs(x);

String s = "Hello World!";
int x = s.length();
int y = s.indexOf("l");

H
s

e o o r d !Wl l l

Math is the class identifier.

s is the object identifier.

String Class – Calling Methods

● Common String methods:

int length()
int indexOf(String str)
String substring(int start)
String substring(int start, int end)
boolean equals(String other)
int compareTo(String other)

String toUpperCase()
String toLowerCase()
char charAt(int index)
boolean equalsIgnoreCase(String other)

String Class – compareTo()

● If we wish to put two strings in alphabetical order, we can use the
compareTo method.

● The return value for s1.compareTo(s2) is an integer that is:

– Equal to zero (0) if the strings are exactly equal

– A positive value if s1 is earlier than s2, alphabetically

– A negative value if s1 is later than s2, alphabetically.

 (upper case comes before lower case)

String Class – compareTo()

● If we wish to put two strings in alphabetical order, we can use the
compareTo method.

● The return value for s1.compareTo(s2) is an integer that is:

– Equal to zero (0) if the strings are exactly equal

– A positive value if s1 is earlier than s2, alphabetically

– A negative value if s1 is later than s2, alphabetically.

In actuality, it compares the unicode values of each
character of the string, one-by-one, and returns the value
of the first character that differs:
 s1.charAt(k) – s2.charAt(k)
Or, if they’re the same until the end of a shorter string:
 s1.length() – s2.length()

String Class – compareTo()

● Determine the output of each:

String s1 = "Hello";
String s2 = "hello";
String s3 = "Hello World!";
String s4 = new String("Hello");
System.out.println(s1.compareTo(s2));
System.out.println(s2.compareTo(s1));
System.out.println(s1.compareTo(s3));
System.out.println(s1 == s4);
System.out.println(s1.equals(s4));
System.out.println(s1.compareTo(s4));

The difference between unicode
64 (0x40) and unicode 96 (0x60)

String Class – compareTo()

String s1 = "Hello";
String s2 = "hello";
String s3 = "Hello World!";
String s4 = new String("Hello");
System.out.println(s1.compareTo(s2));
System.out.println(s2.compareTo(s1));
System.out.println(s1.compareTo(s3));
System.out.println(s1 == s4);
System.out.println(s1.equals(s4));
System.out.println(s1.compareTo(s4));

-32

The difference between unicode
64 (0x40) and unicode 96 (0x60)

● Determine the output of each:

String Class – equals()

String s1 = "Hello";
String s2 = "hello";
String s3 = "Hello World!";
String s4 = new String("Hello");
System.out.println(s1.compareTo(s2));
System.out.println(s2.compareTo(s1));
System.out.println(s1.compareTo(s3));
System.out.println(s1 == s4);
System.out.println(s1.equals(s4));
System.out.println(s1.compareTo(s4));

-32
32

The difference between unicode
64 (0x40) and unicode 96 (0x60)

● Determine the output of each:

String Class – equals()

String s1 = "Hello";
String s2 = "hello";
String s3 = "Hello World!";
String s4 = new String("Hello");
System.out.println(s1.compareTo(s2));
System.out.println(s2.compareTo(s1));
System.out.println(s1.compareTo(s3));
System.out.println(s1 == s4);
System.out.println(s1.equals(s4));
System.out.println(s1.compareTo(s4));

-32
32
-7

The difference in length
between s1 and s2 (5 – 12)

● Determine the output of each:

String Class – equals()

String s1 = "Hello";
String s2 = "hello";
String s3 = "Hello World!";
String s4 = new String("Hello");
System.out.println(s1.compareTo(s2));
System.out.println(s2.compareTo(s1));
System.out.println(s1.compareTo(s3));
System.out.println(s1 == s4);
System.out.println(s1.equals(s4));
System.out.println(s1.compareTo(s4));

-32
32
-7
false
true
0

The references are different, but the
data stored in each is the same.

H
s4

e ol l

H
s1

e ol l

● Determine the output of each:

String Class – Summary

● Common String class methods:

int length()
int indexOf(String str)
String substring(int start)
String substring(int start, int end)
boolean equals(String other)
int compareTo(String other)

String toUpperCase()
String toLowerCase()
char charAt(int index)
boolean equalsIgnoreCase(String other)

Not included
in the Java
AP Subset.

Java AP
Subset.

Using Classes
String Class

AP Computer Science A – Java

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

