AP Computer Science A - Java

Using Classes

String Class

L.ecture Contents

e Declaring a String
e« String Class Methods

length() |

charAt(int index) not part of the AP Subset!
1ndex0f (String s) |
substring(int start)

substring(int start, int end)
equals(String s)

compareTo(String s)

- 1

These methods
> were covered IN
part 1

. | | ‘

String Class — Calling Methods

e« Common String class methods:

int length()

int indexOf(String str)

String substring(int start)

String substring(int start, int end)
boolean equals(String other)

int compareTo(String other)

String toUppercCase()

String toLowerCase()

char charAt(int index)

boolean equalsIgnoreCase(String other)

. | | ‘

String Class — substring()

0 SRS 4 5.0 gieia o olg Bl

Hle[1[lo] |wlo|r{td|!]

e Since we don’t cover char in the AP Subset...

* The substring method returns a String within the range given by a:

— Start index (then end is set to the end of the string)
<String>.substring(int start)
— A start and an end index (it includes the start, excludes the end character) -

<String>.substring(int start, int end).

h.

String Class — Calling Methods | -

* Common String methods:

int length()

int indexOf(String str)

String substring(int start)

String substring(int start, int end)
boolean equals(String other)

int compareTo(String other)

String toUppercCase()

String toLowerCase()

char charAt(int index) -
boolean equalsIgnoreCase(String other)

WY . SR S Lo e TS

Declaring a String

* We’ve been declaring strings using:

String s = "Hello World!";-

- i

* These are (almost) equivalent ways to declare and initialize a string:

Declaring a String

String s = "Hello wWorld!",

String s;
s = "Hello World!";

Declaring a String

- | | -\

* These are (almost) equivalent ways to declare and initialize a string:

String s = "Hello wWorld!",

String s;
s = "Hello wWorld!";

String s = new String('"Hello World!");

String s;
S = new String("Hello World!");

The latter two are the “normal” way to declare and initialize objects.

— The first ways are “sort cut” ways just for the St ring class objects.

Storage of Strings and the eguals Method .

« AString is an object in Java.

* Objects in Java are stored by reference

— This means the object data is stored in one place, and the variable
contains a number that represents the location of the object.

— The following is the code to declare and initialize a string,
as well as a diagrammatic representation of the String object.

String s = "Hello World!";

10 11

L{d|!

5

S
&

h.

6 7 8
Wlo|r

1| Lo

05l
——Hle

Storage of Strings and the eguals Method .

« AString is an object in Java.

* Objects in Java are stored by reference

* The Java compiler will optimize storage if the program uses the
same string in different locations:

String s1 = "Hello World!";
String s2 = "Hello World!";
52 _5 There is only one
0 1 2 3 45 6 7 8 9101 . copyofthe string
52 Hle|l|l|{o| [W]|o|r]|l|d]! ‘Hello World!”

stored in memory.

h.

Storage of Strings and the equals Method

e Since both S1 and S2 refer to the same location... |

String sl1 = "Hello World!";
String s2 = "Hello World!",
System.out.println(s1 == s2);

~— |
~— |w

Pl

Storage of Strings and the equals Method

e Since both S1 and S2 refer to the same location... |

String sl1 = "Hello World!";
String s2 = "Hello World!",
System.out.println(s1 == s2);

~— |
~— |w

Pl

true

Storage of Strings and the eguals Method -

 When we use the new keyword to 1n1t1ahze a strmg, the compﬂer
will not do the same optimization.

String s1 = "Hello World!";
String s3 = new String ("Hello World!");

System.out.println(s1 == s3);

54 e R There are two copies

——[n[e[Uo] [w[o]r[1]d[! Qe PIEsS
of the string

s3 0 1 2 3. 4 5 6, (ies o “Hello World!”

e——*H[e|l[L|o] |Wjolrjl{d]'| stored in memory.

Storage of Strings and the eguals Method .

* If you wish to compare the value of the data stored in two dlfferent
objects, use the equals method.

- For String objects, equals compares character-by-character to decide
if two strings are the same.

String s1 = "Hello world!";

String s3 = new String ("Hello World'"),
System.out.println(s1 == s3);
System.out.println(si.equals(s3));

s1 R R e e o Oy AN I I 1) L
e——»H|e|l|Ll|o| |w|o|r|l|d]|!
S3 0 1 2 «3. 4° 5.6 7 "Sc0slo false

Storage of Strings and the equals Method -

» Recall using the Math class methods...

int x = Math.sqrt(5);
int y = Math.abs(x),

* How does the usage of these String class methods differ?

String s = "Hello World!";
int x = s.length();
int y = s.indexOf("1"); S

10 11

~— o
— jw
(@ N EN
O |~

i ‘—I ©
o

h.

Storage of Strings and the eguals Method .

» Recall using the Math class methods...

int X

_ Math.sqrt(5); Math is the class identifier.
int y '

Math.abs(x);

* How does the usage of these String class methods differ?

String s = "Hello World!"; s is the object identifier.
int x = s.length(); |
' = s.indexOf("1"); S

5 10 11

d[!

8
r

o
o

6
W

243 =4
1| Lo

Ot
——Hle

@ - String methods operate on a String object, above this is object “S”.

h. We don’t have a Math object, only a Math class.

String Class — Calling Methods | -

* Common String methods:

int length()

int indexOf(String str)

String substring(int start)

String substring(int start, int end)
boolean equals(String other)

int compareTo(String other)

String toUppercCase()

String toLowerCase()

char charAt(int index) -
boolean equalsIgnoreCase(String other)

WY . SR S Lo e TS

- | | -\

* If we wish to put two strings in alphabetlcal order we can use the
compareTo method.

String Class — compareTo()

e The return value for s1.compareTo(S2) is an integer that is:
— Equal to zero (0) if the strings are eXéctly equal
— A positive value if s1 is earlier than S2, alphabetically
— A negative value if s1 is later than S2, alphabetically.

(upper case comes before lower case)

h.

String Class — compareTo()

* If we wish to put two strings in alphabetlcal order, we can use the
compareTo method.

e The return value for s1.compareTo(S2) is an integer that is:

— Equal to zero (0) if the strings are exactly equal
— A positive value if s1 is earlier than S2, alphabetically

— A negative value if s1 is later than S2, alphabetically.

In actuality, it compares the unicode values of each
character of the string, one-by-one, and returns the value

of the first character that differs: = .
& sl.charAt(k) - s2.charAt(k)

I . Or, if they're the same until the end of a shorter string:

sl1.length() - s2.1length()

String Class — compareTo()

* Determine the output of each:

h.

String
String
String
String

System.
System.
System.
System.
System.
System.

wnwonuowm
H~ WDN B

out.
out.
out.
out.
out.
out.

"Hello";
"hello";

println(sl

println(sl
println(sil
println(sil

"Hello World!";

new String("Hello");
.compareTo(s2));
println(s2.

compareTo(sl));

.compareTo(s3));

== s4);

.equals(s4));
println(sil.

compareTo(s4)),

The difference between unicode
64 (0x40) and unicode 96 (0x60)

- | | -\

String Class — compareTo()

* Determine the output of each:

String s1 = "Hello",

String s2 = "hello";

String s3 = "Hello world!";
String s4 = new String("Hello");

System.out.println(sl.compareTo(s2)); -32
System.out.println(s2.compareTo(sl));
System.out.println(sl.compareTo(s3));
System.out.println(sl == s4);
System.out.println(sl.equals(s4));
System.out.println(sil.compareTo(s4)),

The difference between unicode
64 (0x40) and unicode 96 (0x60)

h.

String Class — equals()

* Determine the output of each:

String
String
String
String

System.
System.
System.
System.
System.
System.

h.

wnwonuowm
H~ WDN B

out.
out.
out.
out.
out.
out.

"Hello";
"hello";

println(si
println(s2
println(sl
println(sil
println(sil

"Hello World!";

new String("Hello");
.compareTo(s2));
.compareTo(sl));
.compareTo(s3));

== s4);

.equals(s4));
println(sil.

compareTo(s4)),

The difference between unicode
64 (0x40) and unicode 96 (0x60)

-32
32

- | | -\

String Class — equals()

* Determine the output of each:

String
String
String
String

System.
System.
System.
System.
System.
System.

h.

wnwonuowm
H~ WDN B

out.
out.
out.
out.
out.
out.

"Hello";
"hello";

println(sl

println(si
println(sil
println(sil

"Hello World!";

new String("Hello");
.compareTo(s2));
println(s2.

compareTo(sl));

.compareTo(s3));

== s4);

.equals(s4));
println(sil.

compareTo(s4)),

The difference in length
between sland s2 (5-12)

-32
32
-7

- | | -\

String Class — equals()

- | i

* Determine the output of each:

: : sl 0 1 2 3 4
String s1 = "Hello",; ——H|e|1|1l]o
String s2 = "hello";

String s3 = "Hello World!"; s4 o L2 3 4
String s4 = new String("Hello"); ——*Hle|ljl]o
System.out.println(sl.compareTo(s2)),; -32
System.out.println(s2.compareTo(sl)); 32
System.out.println(sl.compareTo(s3)); -7
System.out.println(sl == s4); false
System.out.println(sl.equals(s4)); true

System.out.println(sl.compareTo(s4)); 0

The references are different, but the
data stored in each is the same.

L.

String Class — Summary : -

e« Common String class methods:

int length() | \-
int indexOf(String str) -
String substring(int start) Java AP
String substring(int start, int end) ~ Subset.
boolean equals(String other)

int compareTo(String other) . J

k¢
String toUpperCase() Not included -
String tolLowerCase() e > in the Java
char charAt(int index) - AP Subset.

boolean equalsIgnoreCase(String other) J

AP Computer Science A - Java

Using Classes

String Class

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

