AP Computer Science A - Java

Using Classes

String Class




L.ecture Contents

e Declaring a String
e« String Class Methods

length() |

charAt(int index)  not part of the AP Subset!
1ndex0f (String s) |
substring(int start)

substring(int start, int end)
equals(String s)

compareTo(String s)
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These methods
> were covered IN
part 1
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String Class — Calling Methods

e« Common String class methods:

int length()

int indexOf(String str)

String substring(int start)

String substring(int start, int end)
boolean equals(String other)

int compareTo(String other)

String toUppercCase( )

String toLowerCase( )

char charAt(int index)

boolean equalsIgnoreCase(String other)
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String Class — substring()
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e Since we don’t cover char in the AP Subset...

* The substring method returns a String within the range given by a:

— Start index (then end is set to the end of the string)
<String>.substring(int start)
— A start and an end index (it includes the start, excludes the end character) -

<String>.substring(int start, int end).

h.




String Class — Calling Methods | -

* Common String methods:

int length()

int indexOf(String str)

String substring(int start)

String substring(int start, int end)
boolean equals(String other)

int compareTo(String other)

String toUppercCase()

String toLowerCase( )

char charAt(int index) -
boolean equalsIgnoreCase(String other)
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Declaring a String

* We’ve been declaring strings using:

String s = "Hello World!";-
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* These are (almost) equivalent ways to declare and initialize a string:

Declaring a String

String s = "Hello wWorld!",

String s;
s = "Hello World!";




Declaring a String
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* These are (almost) equivalent ways to declare and initialize a string:

String s = "Hello wWorld!",

String s;
s = "Hello wWorld!";

String s = new String('"Hello World!");

String s;
S = new String("Hello World!");

The latter two are the “normal” way to declare and initialize objects.

— The first ways are “sort cut” ways just for the St ring class objects.



Storage of Strings and the eguals Method .

« AString is an object in Java.

* Objects in Java are stored by reference

— This means the object data is stored in one place, and the variable
contains a number that represents the location of the object.

— The following is the code to declare and initialize a string,
as well as a diagrammatic representation of the String object.

String s = "Hello World!";

10 11

L{d|!

5

S
&

h.

6 7 8
Wlo|r

1| Lo

05l
——Hle




Storage of Strings and the eguals Method .

« AString is an object in Java.

* Objects in Java are stored by reference

* The Java compiler will optimize storage if the program uses the
same string in different locations:

String s1 = "Hello World!";
String s2 = "Hello World!";
52 _5 There is only one
0 1 2 3 45 6 7 8 9101 . copyofthe string
52 Hle|l|l|{o| [W]|o|r]|l|d]! ‘Hello World!”

stored in memory.

h.



Storage of Strings and the equals Method

e Since both S1 and S2 refer to the same location... |

String sl1 = "Hello World!";
String s2 = "Hello World!",
System.out.println( s1 == s2 );
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Storage of Strings and the equals Method

e Since both S1 and S2 refer to the same location... |

String sl1 = "Hello World!";
String s2 = "Hello World!",
System.out.println( s1 == s2 );
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Storage of Strings and the eguals Method -

 When we use the new keyword to 1n1t1ahze a strmg, the compﬂer
will not do the same optimization.

String s1 = "Hello World!";
String s3 = new String ("Hello World!");

System.out.println( s1 == s3 );

54 e R There are two copies

——[n[e[Uo] [w[o]r[1]d[! Qe PIEsS
of the string

s3 0 1 2 3. 4 5 6, (ies o “Hello World!”

e——*H[e|l[L|o] |Wjolrjl{d]'|  stored in memory.




Storage of Strings and the eguals Method .

* If you wish to compare the value of the data stored in two dlfferent
objects, use the equals method.

- For String objects, equals compares character-by-character to decide
if two strings are the same.

String s1 = "Hello world!";

String s3 = new String ("Hello World'"),
System.out.println( s1 == s3 );
System.out.println( si.equals(s3) );
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Storage of Strings and the equals Method -

» Recall using the Math class methods...

int x = Math.sqrt(5);
int y = Math.abs(x),

* How does the usage of these String class methods differ?

String s = "Hello World!";
int x = s.length();
int y = s.indexOf("1"); S
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Storage of Strings and the eguals Method .

» Recall using the Math class methods...

int X

_ Math.sqrt(5); Math is the class identifier.
int y '

Math.abs(x);

* How does the usage of these String class methods differ?

String s = "Hello World!"; s is the object identifier.
int x = s.length(); |
' = s.indexOf("1"); S
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@ - String methods operate on a String object, above this is object “S”.

h. We don’t have a Math object, only a Math class.



String Class — Calling Methods | -

* Common String methods:

int length()

int indexOf(String str)

String substring(int start)

String substring(int start, int end)
boolean equals(String other)

int compareTo(String other)

String toUppercCase()

String toLowerCase( )

char charAt(int index) -
boolean equalsIgnoreCase(String other)
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* If we wish to put two strings in alphabetlcal order we can use the
compareTo method.

String Class — compareTo( )

e The return value for s1.compareTo(S2) is an integer that is:
— Equal to zero (0) if the strings are eXéctly equal
— A positive value if s1 is earlier than S2, alphabetically
— A negative value if s1 is later than S2, alphabetically.

(upper case comes before lower case)

h.




String Class — compareTo( )

* If we wish to put two strings in alphabetlcal order, we can use the
compareTo method.

e The return value for s1.compareTo(S2) is an integer that is:

— Equal to zero (0) if the strings are exactly equal
— A positive value if s1 is earlier than S2, alphabetically

— A negative value if s1 is later than S2, alphabetically.

In actuality, it compares the unicode values of each
character of the string, one-by-one, and returns the value

of the first character that differs: = .
& sl.charAt(k) - s2.charAt(k)

I . Or, if they're the same until the end of a shorter string:

sl1.length() - s2.1length()



String Class — compareTo( )

* Determine the output of each:

h.

String
String
String
String

System.
System.
System.
System.
System.
System.

wnwonuowm
H~ WDN B

out.
out.
out.
out.
out.
out.

"Hello";
"hello";

println(sl

println(sl
println(sil
println(sil

"Hello World!";

new String("Hello");
.compareTo(s2));
println(s2.

compareTo(sl));

.compareTo(s3));

== s4);

.equals(s4));
println(sil.

compareTo(s4)),

The difference between unicode
64 (0x40) and unicode 96 (0x60)
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String Class — compareTo( )

* Determine the output of each:

String s1 = "Hello",

String s2 = "hello";

String s3 = "Hello world!";
String s4 = new String("Hello");

System.out.println(sl.compareTo(s2)); -32
System.out.println(s2.compareTo(sl));
System.out.println(sl.compareTo(s3));
System.out.println(sl == s4);
System.out.println(sl.equals(s4));
System.out.println(sil.compareTo(s4)),

The difference between unicode
64 (0x40) and unicode 96 (0x60)

h.



String Class — equals()

* Determine the output of each:

String
String
String
String

System.
System.
System.
System.
System.
System.

h.

wnwonuowm
H~ WDN B

out.
out.
out.
out.
out.
out.

"Hello";
"hello";

println(si
println(s2
println(sl
println(sil
println(sil

"Hello World!";

new String("Hello");
.compareTo(s2));
.compareTo(sl));
.compareTo(s3));

== s4);

.equals(s4));
println(sil.

compareTo(s4)),

The difference between unicode
64 (0x40) and unicode 96 (0x60)

-32
32
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String Class — equals()

* Determine the output of each:

String
String
String
String

System.
System.
System.
System.
System.
System.

h.

wnwonuowm
H~ WDN B

out.
out.
out.
out.
out.
out.

"Hello";
"hello";

println(sl

println(si
println(sil
println(sil

"Hello World!";

new String("Hello");
.compareTo(s2));
println(s2.

compareTo(sl));

.compareTo(s3));

== s4);

.equals(s4));
println(sil.

compareTo(s4)),

The difference in length
between sland s2 (5-12)

-32
32
-7
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String Class — equals()

- | i

* Determine the output of each:

: : sl 0 1 2 3 4
String s1 = "Hello",; ——H|e|1|1l]o
String s2 = "hello";

String s3 = "Hello World!"; s4 o L2 3 4
String s4 = new String("Hello"); ——*Hle|ljl]o
System.out.println(sl.compareTo(s2)),; -32
System.out.println(s2.compareTo(sl)); 32
System.out.println(sl.compareTo(s3)); -7
System.out.println(sl == s4); false
System.out.println(sl.equals(s4)); true

System.out.println(sl.compareTo(s4)); 0

The references are different, but the
data stored in each is the same.

L.



String Class — Summary : -

e« Common String class methods:

int length() | \-
int indexOf(String str) -
String substring(int start) Java AP
String substring(int start, int end) ~ Subset.
boolean equals(String other)

int compareTo(String other) . J

k¢
String toUpperCase() Not included -
String tolLowerCase() e > in the Java
char charAt(int index) - AP Subset.

boolean equalsIgnoreCase(String other) J
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